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.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL MEMORANDUM

‘IEFJMICROSTRUCTURE OF TURBULENT FLOW*

By A. M. Obukhoff and A. M. Yaglom

In 1941 a general theory of locally isotropic turbulence was pro-
posed by Kol.mogoroff which permitted the prediction of a number of laws
of turbulent flow for large Reynolds numbers. The most important of
these laws, the dependence of the mean square of the difference in vel-
ocities at two points on their distance and the dependence of the coef-
ficient of turbulence diffusion on the scale of the phenomenon, were
obtained by both Kolmogoroff (references 1 and 2) and Obukhoff (ref-
erence 3) in the same year. At the present time these laws have been
experimentally confirmed by direct measurements carried out in aero-
dynamic wind tunnels in the laboratory (references 4 and 5), in the
atmosphere (references 6 and 7), and also on the ocean (reference 8).1
In recent years in the Laboratory of Atmospheric Turbulence of the
Geophysics Institute of the Soviet Academy of Sciences, a number of
investigations have been conducted in which this theory was further
developed. The resul s of several of these investigations are pre-
sented in this paper. $

The fundamental physical concepts which are the basis of
Kol.mogoroff’s theory may briefly by summarized as follows.3 A turbulent
flow at large Reynolds numbers is considered to be the result of the
imposing of disturbances (vortices or eddies) of all possible scales of

*“Mikrostructura turbulentnogo potoka,v Prikladnaya Matematika i
Mekhanika, Vol. XV, 1951, pp. 3-26.

lThe applications of these laws to certain problems of the physics
of the atmosphere may be found in references 9 and 10.

2
In addition to the results contained in the present article, ref-

erence may also be made to the theoretical investigation of the struc-
ture of the temperature field (or of the concentrations of any neutral
additive) in the turbulent flow, presented in references 11 and 12.
The applications of the latter results may be found in references 13
and 14.

3For a more detailed presentation see reference 15.
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magnitude. Only the very largest of these vortices arise directly from
the instability of the mean flow. The scale L of these large vortices
is comparable with the distance over which the velocity of the mean flow
changes (for example, in a turbulent boundary layer, with the distance
from the wall).4

The motion of the largest vortices is unstable and gives rise to
smaller vortices of the second order; vortices of the second order give
rise to still smaller vortices of the third order, and so forth, down
to the smallest vortices which are stable (i.e. the characterizing
Reynolds number is less than the critical value). Since for all vor-
tices, except the smallest ones, the characteristic Reynolds number is
large, the viscosity has no appreciable effect on their motion. The
motion of all vortices that are not too small is therefore not associ-
ated with any marked dissipation of energy; the vortices of the nth
order use ‘practically all the energy which is received from the vor-
tices of the (n- l)th order to form the vortices of the [n+l)th order.
However, the motion of the smallest of the existing vortices is
“lsminar” and depends essentially on the molecular viscosity. In these
very small vortices the entire energy that is transferred along the
vortex cascade goes over into heat energy.

The motion of all the vortices, except for the very largest, may
be assumed homogeneous and isotropic. Any directional effect of the
mean flow ceases to be appreciable for vortices of a relatively low
order. It is also of importance that this motion may be assumed quasi-
stationary, that is, a change in the statistical characteristics of the
motion of the vortices under consideration proceeds very slowly in com-
parison with the periods characteristic of these vortices. It follows
that the motion of all vortices whose scales are considerably less than
L (the microstructure or local structure of the flow) must be subject
to certain general statistical laws which do not depend on the geometry
of the flow and on the properties of the mean flow. The establishment
of these general laws, which have a wide range of applicability, con-
stitutes the theory of local isotropic turbulence.

In the investigation of the laws of the local structure, consider-
ations from the theories of similitude and dimensions are of great value.
It is only these considerations which permit obtaining a number of essen-
tial results. To apply these ideas it is necessary, first of all, to
separate out those fundamental magnitudes on which the local structure

of the flow may depend. On account of the homogeneous and isotropic
character of the motion of the vortex system under consideration, the

4The length L coincides with the length of the mixing path intro-
duced in the semiempirical theory of turbulence.
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characteristics of the mean motion (of the type of
tics, velocity characteristics, etc.) do not enter
mental magnitudes. Therefore, only two magnitudes

3

length characteris-
among these funda-
remain, the mean

dissipation of energy per unit time per unit mass of the fluid e,
which determines the intensity of the energy flow transferred along a
cascade of vortices of different scales, and the kinematic viscosity v,
which plays an essential role in the process of dissipation.5 These
two magnitudes thus play a fundamental part in the theory that is pre-
sented herein.

The dimensions of & and v are:

[c] = L2T-3

[V] = L2T-1

From these two
combination in

I The length ~
I

structure. By
I

bulent motion,

magnitudes, it is evidently
the dimension of length

possible to form a single

determines an internal scale characteristic of the local
use of the previously described physical picture of .tur-
it is possible to identify q with the scale of the’

smallest vortices in which a dissipation of energy occurs (since this
picture does not contain any other characteristic length). The scale
was first introduced in the work of Kolmogoroff (reference 1); it is
termed the internal (or local) scale of turbulence (in contrast to the
external scale L).

In the further analysis of the microstructure, two limiting cases
may be considered separately to advantage: the case of scales much
larger than q and that of scales much smaller than ~. First, the
system of vortices with dimensions much smaller than L “but much greater
than the scale ~ of the smallest vortices is considered. The motion
of these vortices, as has already been pointed out, should not depend

5The fluid is assumed everywhere to be incompressible and to have
a constant density p. The magnitude p is not included herein among
the fundamental magnitudes because in the main part of the paper (sec-
tions 1 and 3), the purely kinematic characteristics of the flow, which
of course cannot depend on the density, will be considered. When, how-
ever, the structure of the pressure field (section 2) is investigated,
it is necessary to add p to ~ and V. Information on the fundamen-
tal magnitudes on which the local structure of the temperature field
may depend is found in references 11 and 12.
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on the viscosity v, a circumstance which immediately facilitates the
obtaining of concrete results by computation of the dimensions. In the
second extreme casej for scales of motion much less than 7, the motion
may be assumed laminar. However, in the intermediate range of scales
of the order of ~j the theory of dimensions gives, as a rule, less
concrete results. Thus, for exsmple, it follows from this theory that
any nondimensional function of the distance determined by the local
structure should be a universal function of r/~. The form of this
function for values of the argument of the order of unity remains how-
ever undetermined.

In the present paper an attempt is made to describe quantitatively
the structure of the fundamental hydrodynamic fields (pressure, velocity,
and acceleration) for all distances less than L (i.e., for the entire
range for which the theory of Kolmogoroff applies). For this purpose
some additional hypotheses are introduced which have a certain experi-
mental basis. The asymptotic formulas for r>>? and for r<<~
obtained are in agreement with known earlier results where all the
undetermined numerical coefficients that figure in these results are
expressed in terms of a single constant S (asymmetry or skewness
factor), the value of which has been experimentally determined by
Townsend (reference 4). The nondimensional magnitude S (as well as
the magnitudes e and v) enters only in the expression for the char-
acteristic scales so that with an accuracy up to the choice of units
the measurements of the structure of all the fields considered under
the assumed hypotheses are described by universal functions not depend-
ing on any experimental data (see figs. 1 to 3; the meaning of these
functions will be explained in a later discussion).

The investigation of the structure of the velocity field (section 1)
is the work of A. M. Obukhoff; the investigation of the pressure field
(section 2) was started by Obukhoff (reference 16) and continued by
A. M. Yaglom; the investigation of the acceleration field (section 3)
was carried out by Yaglom. Several results of the present work were
first published in the form of separate short communications (refer-
ences 7, 16, and 17].

1. Computation of structural functions of velocity field. In order
to be able to make use of the concepts of locally isotropic turbulence in
investigating the velocity field of a turbulent flow, it is first neces-
sary to separate out those characteristics of the field which depend
only on the local structure. The true velocity v will essentially be

determined by the mean flow. In the theory of turbulence the usual
decomposition of the true velocity v into the mean velocity ~ and—
the fluctuating velocity v’ = v - ~ gives a component V’ not dewnd-
ing on this mean flow; but the theory does not solve the problem pro-
posed since the value of v’ will be determined mainly by the very

6The acceleration of the f’lowis considered herein to be the total

acceleration dv/dt of the fluid particles moving in space.
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large vortices, the scale of which is comparable with L. However, as
was first noted by A. N. Kolmogoroff (reference 1), the above mentioned
required that a separation of the characteristics be effected by con-
sidering the difference of the velocities at two sufficiently near
points (i.e., the relative motion of two neighboring elements of the
fluid). It is clear that this difference will not be affected by the
large vortices which transport the pair of points under consideration
as a whole. Hence, in the theory of local isotropic turbulence, the
following functions are taken as the fundamental quantitative charac-
teristics of the structure of the velocity field:

Dij(M,M’) = ~i(M’) - vi(M)] &j(M’)- vj(M)](i,j=l ,2,3) (1.1)

where vi(M) is the ith component of the velocity vector v(M) at the
point M> and the bar above a symbol denotes the average value. The
function Dij (M,M’) is termed the structural function of the velocity
field. According to the preceding discussion, for a distance r
between the points M and M’ much less than L, this function depends
only on the local structure of the flow. On account of the homogeneity
and isotropy of the motion of the vortices with scales much less than
L, the function D++ (M,MI), for r<<L, is an invariant tensor function
of the vector MMt “’and may therefore be represented

Dij(M,M’) = A(r)&i~j +B(r)bij

in the form

(1.2)

where El, E2, and <3 are the components of the vector MM’ (so that

$i’12+g22 +~32 =r) and 8.. =lfori=jandbij =Ofor
lJ

i+j.

When first
‘1 =V.=v where v is the projection of the

velocity vector on a ce~tainndirection ~erpendicular to the vector
~1 and then VI =’V.= VI where V.J is the projection of v on the

direction of the vect~r MM’ are set into this formula, it is readily
shown that equation (1.2) may be represented in the form

Dij(MjM’) =
~(rj -Dnn(r)

gi~j +Dnn(r)5ij
r2

where the functions D21 (r) and Dnn(r) (the longitudinal and trans-

verse structural functions) have the simple physical meaning:
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1

D7Z(r} = VIM’ - VI(M) 2

The

the main

Dnn(r) = [Vn(M1) - Vn(M)]2

determination of these functions, Dzz(r)

object of this section.7
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(1.4)

and Dnn (r), will be

In the theory of local isotropic turbulence it is Dossible to con-
“

sider the functions DZZ (r) and Dnn(r) as independen~ of the time.

As a matter of fact, a quasi-stationary statistical regime in a.region
of sufficiently small turbulence scale is assumed. From the consider-
ations of the theory of similarity, it follows that in the range of—
applicability of the theory of locally isotropic turbulence (i.e., for
r<<L), the functions DZZ(r) and Dnn(r) are
form

3 -1 l/4
where 7=(VC) is the internal scale of

and dnn(x) are universal functions. Formulas

represented in the form

representable in the

(1.5)

turbulence and dlz (X)

(1.5) may alsobe

71n the theory of isotropic turbulence, the correlation functions
(longitudinal and transverse) are usually employed.

Bzz(r) = Vl(M)Vz(M’]

The structural functions
correlation functions by

Bnn(r) = vn(M)vn(M’)

in the isotropic case are connected with the
the following relations:

DZZ(r) = 2{B(0) - BZZ(r))

Dnn (r) = 2(B(0) - Bnn(r))

where B(O) = BZ7(0) = Bnn(0).
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where

().Dzz(r) = U1213ZZ ~

Dnn(r) =

()
u12@nn ~

4

‘1 = k2 6

The numerical factors ‘1 and k2 can

will always be assumed to be of the order of

be chosen by inspection and

unity, and 137.7.[x)and

Since for r>>~

of the stated physical
ity V, the asymptotic

the functions D22(r)
considerations, should
equations should hold

7

(1.6)

(1.7]

13nn(x) are new universal functions the graphs of

the graphs of the functions dlz(x) and dnn(x)

scales along the x and y axes.

dll(x) “ x2/3

dnn(x) “ X
2/3

The same ~q~ations als? hold, of course,

and

not

.-
which are obtained from

by a simple change of

Dnn(r), on account

depend on the viscos-

for x7>1 (1.8)

in relation to the
functions ~zz(x] and 13nn(x). Whence it follows that for r>>?

D2Z(r) = Ce
2/3 r2/3

(1.9)

Dnn(r) = C’Z
2/3 r2/3

.

I
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(the so-called 2/3 law). In the other extreme case, for r<<q, the
difference of the velocities v(M’) - v(M) will be of the first order
of smallness with respect to r (for such distances the velocity at a
point of the flow is continuous and is a differentiable function of
the coordinates), so that in this case

DZZ(r] = Ar2

Dnn(r) = A’r2

(1.10)

The more complete theory based on the equations of hydrodynamics
is now discussed. First use of the equation of continuity

shows with little difficulty that

dD3~ (r}

Dnn(r) = D22(r) ‘~ dr

and that

(1.11)

(1.12)

[v(M’) - v{M)][p{M’) - p(M)] = O (1.13)

where p(M) is the pressure at point M (see, for exmaple, refer-
ences 2 and 15 and compare also references 18 and 19). Now with the
aid of equations (1.12) and (1.13] and the equations of motion

(1.14)
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it may be shown that the function D..(r) is connected with the struc-
tural function of the

by the known relation

third order ‘G’ -

Dzz,(r). = ~z(M’) - Vz(M~3 (1.15)

8
of Kolmogoroff (reference 2).

dD2z(r) = 4

Dz+) - 6V ~r --&r
5

(1.16)

81n the case of homogeneous and isotropic turbulence, the equation
relative to the correlation functions (references 18 and 19) is easily
derived from equation (1.14):

where

When the correlation functions are replaced by the structural
functions given by the formulas in the previous footnote (and by an
analogous formula for B2Z& the following is obtained:

from which equation (1.16) is obtained after a single integration with
respect to r. Tn a similar manner, equations (1.12) and (1.13) may
be obtained from known results relative to isotropic turbulence. It
may likewise be shown that equations (1.12), (1.13), and (1.16) are
also valid within the framework of the theory of a locally isotropic
flow .

., — —.. .... .... . ,,,., ,,..—.-.. .. .. .. .. ,,. ... ...- .—.. ,-..—-——.—-.—... -———
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For r-=<q,

(since for these

NACA TM 1350

the term D2Z3(r]
.

may be neglected in this relation

values of r the function DZZ2(r) will be of

third-order smallness with respect to r) and therefore, equations (1.16)
and (1.12) give

This is an
the other hand,
since

the solutions

D17(r) =* $ r2

for r<<~ (1.17)

improvement in the accuracy of relations (1.10). On
for r>>q the term with the viscosity may be rejected

The nondimensional magnitude,
probabilities for the longitudinal
is now introduced

the asymmetry of
component of the

D7Z2(r)

r>>q (1.18)

distribution of the
velocity difference

(1.19)

From the considerations of the theory of dimensions, it follows
that for r>>~ the magnitude S should have a constant value (it
can depend only on r and on e , but from these two magnitudes it is
not possible to obtain any nondimensional combination). From equa-
tions (1.19), (1.18), and (1.12) it follows that for r>>~
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The
with the

(D3Z(r) = -

11

(1.20]

coefficients C and C’ of formulas (1.9) are thus connected
asynnnetry S by the following simple relations:

(1.21)

C’=gc

It follows that S is always negative: S = - ISI. Formulas

(1.17), (1.9), and (1.21) were obtained by A. N. Kolmogoroff in 1941
(references 1 and 2). Up to that the, the results obtained from the
equations of hydrodynamics only slightly improved the accuracy of the
results obtained previously from a dimensional analysis and they
referred only to the two extreme cases: r>>? and r<< q. In the
matter of the computation of D27(r) for the intermediate values of r,

the single relation (1.16) is of course not sufficient. In this rela-
tion are two unknown functions Dzl(r) and Dzzz(r), and therefore

still another relation between them is required for their determination.
The theory does not give this needed relatlon, but an attempt may be
made to derive it from experimental data.

At the present time, results are known of the direct measurements
of the magnitude S for various distances, conducted by Townsend
(reference 4) in wind-tunnel tests at very high Reynolds numbers for
the purpose of checking the theory of Kolmogoroff. These measurements
have shown that the asymmetry S may, with a sufficient degree of
accuracy, be assumed as constant not onlY for r>>? but in general
for all values of r lying within the range of applicability of the
theory of locally isotropic turbulence. The experimental value of S
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for all values of r 9is approximately -0.4. This experimental fact
provides the additional relation between DZ2 (r) and D2ZZ(r)~ which

permits the determination of these functions uniquely for all values of
r.

Thus the asymmetry S is assumed constant. From equations (1.16)
and (1.19)

(1.22)

where IS I is constant. This equation in the function D12(r) with

coefficients depending on V, E, and IS I is considerably simplified
if transfer is made to nondimensional magnitudes and the as yet unde-
termined numerical factors ‘1 and ‘2 are in the expressions for the

scales (i.e., use is made of formulas (1.6) and (1.7)). Then for

(1.23)

The magnitudes & and v no longer enter into this equation.
For a.corresponding choice of the constants ‘1

and
‘2 ‘

it is also

possible to eliminate the experimental constant IS I and obtain for

fizz(x) an equation with numerical coefficients. It is convenient to

choose ‘1 and k2 such that

[s1k1k2 4 3/2=
6 ()z

z k12
—— = 1
15 k22

(1.24)

9
The experimentally determined values of S fluctuate between

the limits -0.36 and -0.42. This scatter lies within the limits of
accuracy of the measurements. As the most probable value of S
Townsend gives the value -0.38. However, this value may not be assumed
reliable for purposes of this report.

I —., ... .. .. .. . . . ..,--,. ., . .. . .. . ,. ...... ., , ,, .,.-,,,,, ,,-,,,, , ,,, ,, , , , , ,,, , ,,.,,,,.-,-
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that is, to set
4

_4fil
‘1

4n
mr=w

“=*l+-r”%?
The equation for ~lz(x) is then

13

(1.25)

(1.26)

Equation (1.26) together with the initial condition P@) =0

uniquely determines the nondimensional longitudinal structural function

1372(x) which describes the structure of the velocity field.10

10The structure of a turbulent flow may likewise be described with
the aid of the spectral energy distribution. In this case, E(p)
denotes the energy of the system of disturbances the wave number of,
which is larger than p (the scale of disturbance is inversely propor-
tional to the wave number). In the statistical theory of homogeneous
(stationary) processes and fields, it is shown that there exists a one
to one correspondence between the correlational (structural) functions
and the functions E(p); the formulas that permit expressing one of
these functions in terms of the other approximate in type the Fourier
transformation (cf. references 20 and 31). The 2/3 law for the struc-
tural functions, equations (1.9), is equivalent to the rati of the
spectral function E(p) for P<<P1~ 9(to the magnitude p-’ 3 i.e.,

the ratio of the spectral density dE(p)/dp = E’(p) to the magnitude

P
.5/3) . The scale ~ corresponds in the spectral theory to the critical

wave number PI = I/q . The 2/3 law was first obtained in this form by

A. M. Obukhoff (reference 3) in 1941. The complete description given
in the text of the structural function DZZ (r) is equivalent to the

determination of the spectral function not only for p<<pl but also,

in general, for all values of p. There are a number of attempts
(references 3, 21, 22 and 5) at a direct theoretical computation of the
function E(p) for all p. The results thereby obtained are however
difficult to compare with experimental data.
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The corresponding nondtiensional transverse structural function $nn(x)
is determined from the relation (1.12) which, after substitution from
equation (1.6), may be represented in the form

(1.27)

Figure 1 shows the graphs of the graphs of the functions B~~ (x)

and 13nn(x),where pzt(x) was determined with the aid of numerical

integra.tionll of equation (1.26) for the conditions ~ZZ(0) = O, and

13nn(x) was computed with the aid of P27(x) from relation (1.27).

The dotted curves denote the asymptotic values of these functions for
small and large values of x:

for x<<l

pnn(x) = X2

for x>>l

(1.28)

(1.29)

pnn(x) = x
2/3

These formulas correspond to the asymptotic equations (1.17) and (1.20)
for the structural functions. The particularly simple form of the
asymptotic formulas for the function ~nn(x) permits a very simple

determination of the magnitudes of ~1 and U1 of equation (1.6) from

the transverse structural function @nn(x) which was obtained from

11
For large values of x (for x>8), it is convenient to make

use of the asymptotic expansion for Pzz(x):

(3 2/3 ~
132JX)-l X .*X

-4/3 5 -8/3 +

-Zx )
. . .
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experiment. 12 It is for
for the coefficients ‘1

A direct comparison

this reason that the previously
and ‘2 were chosen.

of the computed curves with the

15

mentioned values

experimental
curves obtained in wind-tunnel ‘measurements is technically difficult
to make because of the smallness of the scale q. In wind-tunnel
measurements it is thus usually possible only to check the agreement
with the 2/3 law (see for example references 4 and 5). With relation
to the results which refer to the trend of the curve for r N TIJ

it is necessary to be satisfied with an indirect check of the type used
in checking the accuracy of the constancy of the asymmetry factor.
From this point of view measurements in the free atmosphere are evi-
dently more convenient because here the scale 71 is somewhat larger

(of the order of several mm). Nevertheless, such experiments are very
complicated and up to this time only one investigation containing data.
referring to scales of the order of ~1 is known. This is the investi-

gation of G6decke (reference 23) in which the mean absolute differences
in velocity in a.direction perpendicular to the base (which corresponds
to the transverse structural function) is measured for distances of r
varying from 0.1 to 80 centimeters at an altitude of 1.15 meters [?].
The evaluation of these data. (reference 7) has shown that they are in
good agreement with the theoretical curve obtained herein for pnn(x)
where ql = 0.54 centimeter and ul = 2.02 centimeters per second.

2. Computation of structural function of pressure field. The
study of the local structure of the field of pressures in a turbulent

12
“Technically, the measurement of Dnn(r) can be affected much

more simply than the measurement of Dzl(r) . For this reason Dnn(r)

is generally measured in experimental work. Approximation of the curve
obtained for Dnn (r) to a parabola for small values of r to a parab-

ola and to the 2/3 law for large values of r gives precisely the mag-
nitudes of 71 and U12, the coordinates of the point of intersection

of these two asymptotic expressions. The above construction is con-
veniently carried out on logarithmic scale; the parabola. and the 2/3 law
are thereby represented by two straight lines (cf. reference 7).

,,,. , ,.,,,.....-.,-,.,,,,.,.- , ,.,,-,.-.,-,,,,,,.,., , ,, .. . . . . .———.
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13 AS a quantitative characteristicflow is considered in this section.
of this structure, as in the case of the velocity field, the corres-
ponding structural function is chosen

II(M,M’) = [P(M’) - P(Mf12 (2.1)

In the case of a locally isotropic flow, the function TI(M,M’),
for a distance r between the points M and M’ much less than the
external scale of turbulence L, will depend only on r:

It(M,MI) = II(r) (2.2)

and will be entirely determined by the local structure of the flow.

From considerations of the theory of dimensions it follows that

where

(2.3)

(2.4)

the numerical coefficients kl and k2 being assumed to coincide with

the coefficients in equation (1.25) and m(x) being a universal func-
tion. Further, since for r>>q

$
the structural formula II(r) should

not depend on the viscosity v) he asymptotic equation is

4/3m(x) - x for X>>l (2.5)

and therefore

2 4/3r4/3II(r) N o & N 02CDzz(r)~2 for r>>Vl (2.6)

13From the fact that when deriving the fundamental equation connect-
ing the second and third moments of the velocity field of an isotropic
(locally isotropic) incompressible flow, the pressure is excluded (see
references 18 and 19 and also equation (1.13)), it does not follow that
in an isotropic (locally isotropic) turbulent flow fluctuations of the
pressure are absent. Such an erroneous conclusion has been drawn by

M. D. Millionshtchikov (reference 24).



It
and, in
imately

will now be shown how the numerical coefficient in this formula
general, the entire trend of the function n(x) may be approx-
computed.

. -.
For this purpose use is made of equations (1.14). If the ith

equation is differentiated with respect to xi and summed over i, then

on account of relation (1.11) the terms with &i@ and with Avi
drop

or

(the

out and

equation of continuity is

From equation (2.8) it is

again applied).

not difficult to

(2.7)

(2.8)

derive the differential
equation for the function II(r) . It is simplest to proceed as follows.
At first the assumption is made that the velocity field and pressure
field are statistically homogeneous and isotropic (and not only locally
homogeneous and locally isotropic). In this case, the left and right
sides of equation (2.8), written out for the point M with coordinates

‘1’ ‘2’ ‘3’
are multiplied correspondingly by the left and right sides

of the analogous equation for the point M’ with coordinates ~x’, x~,

x:, and the result is averaged and after taking into account the fact

that in the case of a homogeneous and isotropic pressure field

Ap(M)Ap(M’) =A2[p(M)p(M’)1

where when differentiation is carried out on the right side with
respect to the components ~i = Xl - xi of the vector MM’

x
bvi(M) avj(M) &k(M’) avZ(M’)

A2p(M)p(M’) = p2 ~~y~
(2.9)

i,j,k,2

It should now be noted that in the case of a homogeneous and iso-
tropic flow the correlation function ~ iS connected with the
structural function (2.1) by the relation (see previous footnote):
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II(r) = 2[~ - p(M)p(M’)] (2.10)

Equation (2.9) may therefore be rewritten in the form

x avi(M) a~j(M) ~Vk(M ‘) bvz (M‘)
= -2p2

~~~~
(2.11)

i,j,k,2

This is the required equation. It also has a meaning in the case

of locally homogeneous and locally isotropic (but not homogeneous and
isotropic) flow, and with the aid of more complicated considerations
it may also be derived without the assumption of homogeneity and iso-
tropy.

The structural function TI(r) is thus seen to be a solution of

equation (2.11), in the right side of which appears a combination of
four moments of the derivatives of the velocity field. Unfortunately
these moments are not known, and in order that any use may be derived
from equation (2.11), it is necessary to make an additional assumption
which will permit computing these moments. The assumption adopted herein
is that proposed by M. D. Millionshtchikov (reference 24) which states
that the fourth moments of the velocity field are expressed in terms
of the second moments in the same manner as in the case of the normal
Gaussian distribution.14 As a first approximation this assumption
appears to be an entirely natural one. This assumption finds a.certain
justification in the measurements of Townsend (reference 4) which show
that the experimental value of the fourth moment for the velocity deriv-
ative avl/axl differs by no more than 15 percent from the value com-

puted by the measured value of the second moment on the assumption of
normal distribution.

For any four chance magnitudes WI, W2, W3, and W4 subject to a

four-dimensional normal-distribution law, the equation holds (see for
example, reference 25):

—— . . . .

‘lw2w3w4 = ‘1W2 ‘3W4 + ‘1W3 ‘2W4 + ‘lw4 ‘2W3

141t is noted that in the recent work of Heisenberg (reference 21)
a hypothesis with regard to the spectral functions of an isotropic tur-
bulent flow precisely equivalent to that proposed by M. D. Millionsctchikov

was used.
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When this formula is applied to the product of’the four derivatives
of the velocity field which enter into the right side of equation (2.11),
the following equation is obtained:

x
i,j,k,l

‘z
i,j,k,2

hi(M) hk(M’) avj(M) av2(M’)

axj ax~ ax ax;
i

avi(M) avj(M) bk(M’) &z(I’J’)

= Z ~~ax, ax,
i,j,k,l J i 1 k

-.

+

(2.12)

The first term on the right-hand side of the equation is propor-
tional to mm. In the case of a locally isotropic flow, it
is easily verified that this term becomes zero, as can be derived, for
example,from equations (1.3) and (1.12). The last two terms of equa-
tion (2.12) are equal to each other. It is further noted that in the
case of a locally isotropic flow

~vi(M) &k(M’)

bXj ax;

~ b2 Dik(M,M’)
=—

2 Xj%z
(2:13)

where .Dik is the structural function in equation (1.1) and

Ej=xj -Xj. From this it follows that for the assumption made about

the relation of the second and fourth moments, equation (2.11) may be
represented in the form

&!&!&l+&u=-pz ~

dr4 r dr3 i,j,k,2

The function on the right side of this
only on r

equation depends, of course,

x b2Dik(M,Mf) b2Dj2(M,MI)
@(M,M’) =

a<j Mz %i aE~
= +(r) (2.15)

i,j,k,2
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With the aid of equations (1.3) and (1.12), equation (2.15) may be
reduced, after rather long transformations, to the form

()~dD2 2

()

22

11 ‘D22 %+4dD22+20 — + ~ ‘%7 D3%2
@(r) =——

—F dr2
(2.16)

r2 dr r dr2 TT

In accordance with the definition
even and assumes the value zero for r
ary conditions which result are:

II(o) =

IT’(o) =

As a third boundary condition use

n-f.~

(2.1), the function n(r) is
= o. Therefore, the two bound-

0 (2.17)

0 (2.18)

is made of15

*+O for r~~ (2.19)

Equation (2.14), for the conditions of equations (2.17), (2.18),
and (2.19), has a unique solution which is the required structural
tinction.16

Since all linearly independent solutions of the homogeneous equa-
tion corresponding to equation (2.14) are found without difficulty
(they are 1, r, r2 and r‘1), the required solution of the nonhomo-

geneous equation can be constructed with the aid of Green’s functions.
It is easily verified that in the case of the boundary conditions
expressed in equations (2.17), (2.18), and (2.19), this function for
equation (2.14) has the form

—-
lbIt may be shown that this condition is required so that the

correlation between the differences in the values of the pressures a.t
two pairs of points will approach zero as one pair of points recedes
infinitely from the other (the distance between the points for each
pair is assumed to be fixed).

161t may appear strange that only three boundary conditions are
used, whereas equation (2.14) is of the fourth order. The fact is,

however, that equation (2.17) is a double condition: Zero is a singu-
lar point of equation (2.14) and therefore one boundary condition will
be the requirement that the function have regularity at zero.
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G(r,E) =

The required solution for

21

II(r) may be represented in the form

(2.21)

The function +(r), given by equation (2.16)) may, on account of

relations (1.6) and (1:7), be represented in the form

where kl, k2Y and V1 are determined from equations

and 9(x) is the universal function:

(2.22)

(1.25) and (1.7)

(2.23)

When equations (2.20) and (2.22) are substituted in equation (2.21)
and a change of variables is made (cf. equations (2.3) and (2.4))

()
IT(r) =k24 p2 vefi~ (2.24)

where

J(

x C3 Xcz

‘?”(~)d’ ‘J+’ (’)d’
m(x)= -~+y+”~

1

s’ J’ J

‘4 X2 =
=-—

2 J
‘~q(~)dc += ox cz~(c)d~ ++ o { ~(~)d~ +~ x {Q(!.)dc

o
(2.25)
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Thus the universal function
with the function P7.1(x)~which

NACA TM 1350

m(x) of equation (2.3) is connected
was computed in the preceding section,

by use of relations (2.25) and (2.23). Equation (1.26) expresses the
derivative d~Z1/dx in terms of the function $21 (x). When this equa-

tion is applied several times, the second and third derivatives of
these functions can be expressed in terms of ~zl(x) and therefore

also the function Q(x) . Thus, with knowledge of the function ~27(X)

from section 1, (p(x) can be determined and all the integrals in equa-
tion (2.25) can be numerically computed, that is, the function m(x),
which determines (due to a relation with equation (2.3)) the structure
of the pressure field can be computed. The graph of the function n(x)

thus obtained is given in figure 2.

The dotted
fl(x) for small
for scales much

curves in figure 2 show the asymptotic behavior of
and large values of x. Since the motion of the fluid

smaller than ~1 is laminar, for X<<l
.1

3-c(x)= axz (2.26)

(See the analogous derivation for the structural functions of the vel-
ocity field.) The coefficient a. in this formula can easily be
obtained from equation (2.25) as follows. From equation (1.28),

= X2 2 for x<<l.P#) / Hence the function Q(x), for such values

of x, may be considered as constant: ($(x) = 30. When this value is

substituted in equation (2.25), the term proportional to X2 gives

only the last of the integrals in equation (2.25) and

(2.27)

(This value hasbeen obtained with the aid of numerical integration.)
The curve

n(x) = 0.83 X2

is the first of the asymptotic curves drawn in figure 2.

In the econd limiting case, for x>>l
7 ?

equation (1.29) shows

P73(X) = 3x2 3/4, and therefore Q(X) = 7X-8 3/18. Equation (2.25) is

now represented in the form
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(2.28)

It is not difficult to see that the values of the.integrals on the
right side of equation (2.28) for x+~ will not increase any faster
than the first degree of x, so that the rincipal term of the asymptotic
formula. for n(x) will be the term 9x4&16. Thus, the numerical
coefficient in equation (2.5) is equal to 9/16 and the symbol of the
asymptotic equation (2.5) means only that

or

II(r)
=1 for r>>ql

P2[DzZ(r)]2

The difference - 9x4~3/16, however, increases without limitn(x)
as x increases.

To obtain the succeeding terms of the asymptotic formula for
x(x), equation (2.28) is further transformed:
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(2.29)

Here the integrals over the range from O to w converge very
rapidly and may be numerically computed while the last integral over
the range from x to m may be evaluated for x>>l with the aid of
the asymptotic formula given in a.previous note. It should be noted
that this integral adds only an insignificant increment to the constant
term of the asymptotic formula for n(x) . Finally, with an accuracy
up to terms approaching zero as X+Co,

4/3
37(x)= :x - 0.08x + 0.85 for x>>l (2.30)

This is the equation for the asymptotic curve for large values of
x plotted in figure 2.

No knowledge of any experimenta.l data. on the structure of the pres-
sure field which could be compared with the results obtained herein is
known to the authors. It should be remarked that the computations pre-
sented previously show that the mean square values of the differences
in pressures are found to be so small, as a rule, that their measurem-
ent would be associated with very great experimental difficulties. It
does not follow from this, however, that the computation of the struc-
tural function of the pressure field is practically useless. In the
following section it will be shown that the values of the local pressure
gradients thereby obtained are very large so that the accelerations pro-
duced by the fluctuations of pressure may play an essential role in
processes which arise in turbulent flow.
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3. Computation of correlation functions of acceleration field. A
study of the acceleration field of the fluid particles in a turbulent
flow is now undertaken. This field differs from the fields considered
in the previous sections in that the very smallest and not the largest
vortices17 are essentially responsible for values of the acceleration at

a Poi~t} as is the case for the velocity and pressure fluctuations. For
this reason, in the case of the field of accelerations of the local
flow structure, not only the statistical characteristics of the differ-
ence in values of the field at two points (e.g., the structure function)
are determined, but also the statistical characteristics of the values
of the field. The most important of these characteristics is the corre-
lation function, the mean value of the product of the values of the
field at two points (i.e., in the case under consideration, the mean

18 The computationvalue of the product of the acceleration components).
of this correlation function is the main concern in this section.

The value of the correlation function at zero is determined first,
that is, the mean square of the acceleration of a fluid particle at a
single point. This magnitude is the numerical characteristic of most
interest of the acceleration field. From the equations of motion (1.14),
the acceleration components of the fluid particle

dv . bvi 3 av.
Wi=—=

dt x‘ W+j=lvj#
(i=l,2,3) (3.1)

17From considerations of the theory of dimensions it follows that

to vortices of the scale of 2, where 1>>~, there corresponds the

characteristic period Tz = (22/+/3 such that the velocity characteri-

stic for these vortices is equal to Vz = Z/Tz = (&2)1’3 and the char-

acteristic acceleration is
‘z =

2/T22 = (c2/Z)l/3. Thus it is observed

that when the scale of lengths is decreased, characteristic velocity
decreases while the characteristic acceleration increases. From this
it follows that the very small vortices of scales 25 ~ are mainly
responsible for the value of the acceleration at a point of the flow
(for such vortices, the dimensional considerations adduced herein do not
correspond, of course, to actual conditions, for the motion of these
vortices essentially depends on the viscosity)

181t is clear that the correlation function is a more significant
characteristic of the field than the structural function. Knowledge of
the correlation function always allows determination of the structural
function also. The converse does not hold true.
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are equal to

1 ap
Wi=-— + vAvi

p=

from which is obtained

NACA TM 1350

(3.2)

The first and third term on the right side of this equation may
be expressed, without difficulty, in terms of the structural functions

of the velocity and pressure fields, equations (1.1) and (2.1):

(3.4)

(3.5)

The middle term on the right side may be expressed through the
interrelated structural functions

Dip(M,M1) = ~i(M1) - Vi(M)-[P(M’) - p(M)](i = l~2Y3) {3”6)
— —

of the velocity and pressure fields.
local isotropic flow these functions
tion (1.13)), the middle term on the
becomes zero, and therefore

Since in the case of incompressible
should be equal to zero (see equa-
right side of equation (3.3)

(3.7)

But on account of equations (2.24), (1.7), (1.25), (2.26), and
(2.27)

...... . . . ,,, .,.,..,, .. .... ,.--,., , ,,-. -, .,,,.-,,, ,,, ,, , ,, 1 111111 Ilmmlm—nl 1 1 1
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Hence19

2- Qm.Q=L 3
2P2 dr2

,2,% (&y = ~ ‘-’i2 ‘3/2

Further use is made of the fact that for any choice of
systems

~Dii(r)=Dzz(r) +2Dnn(r)
i=l

(3.8) .

(3.9)

coordinate

(3.10)

and of equation (1.12), the following is obtained:

d5DZZ (r) d4DZ2 (r)
+ 24

d%ZZ (r)
. r + 11 (3.11)

dr5 dr4 ~ dr3

With the aid of formulas (1.6) and (1.7), the change from D22 (r)

to the nondimensional function ~ZZ(x) gives

lgThe computation of the magnitude lgradp\2 for locally isotropic
turbulence is also contained in the work of Heisenberg (reference 21).
The method of Heisenberg is based on the employment of the spectral
function E(p) and requires considerably more complicated computations.
Moreover, in the final formula of Heisenberg, magnitudes enter which
cannot be separately measured in tests.

6
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It is now noted from equation (1.25) that

!s=lal.iz
%4 120fi

(3.12)

(3.13)

and that @zZ(x) is an even function of x which may be expanded in
7

the neighborhood of zero in a power series in x“:

pzz (x) =blx2+b2x4+ . . .

ltrom equations (3.12), (3.13), and (3.14) the following is

J(&iJO)‘%;5’2“2840’2 ‘:’s’ b2r5’2

(3.14)

obtained:

~3/2

(3.15)

By use of this method, only the determination of the coefficient

‘2 in equation (3.14) remains. From the first of equations (1.28) it

follows that bl = l/2. When the expansion (3.14) is substituted in

equation (1.26) and the coefficients of r3 are equated (or, what is

equivalent, differentiating equation (1.26) with respect to r three
times and then setting r “= 0), the following equation is readily

obtained:

1
b2=-—

3d-G
(3.16)

The substitution of this value of ‘2 in equation (3.15) gives

()/ 2 3. 3

z A ,&l Dii(0) =V2 ~~1 (AVi)2 =fiv-1/2&3/2 = 0.31sIV

-1/2 ~3/2
_—

.= 6@
(3.17)
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Since IS I =0.4, it follows from a comparison of equation (3.9)
with equation (3.17) that the acceleration of the fluid particles in a
turbulent flow is essentially determined by the fluctuating pressure
gradients and not by the friction forces. The tern-with IT’’(O) in
equation (3.71 is more than 20 times as large as the term depending on
the viscosity. It shall be seen that this greatly simplifies the compu-
tation of the correlation functions of the acceleration field.

When equations (3.9) and (3.17) are substituted in equation (3.7),
the following formula is obtained for the computation of the mean square
of the.acceleration

‘o:

(3.18)

Since \Sl = 0.4, equation (3.18) may be
relation

-1/2 3/2
w2=3v
o &

replaced by the simple

(3.19)

This general relation permits the estimation of the order of mag-
nitude of

‘o
in specific cases of turbulent flow without difficulty.

As an example, formula (3.19) is applied to the computation of the
mean square acceleration in certain turbulent flows behind a screen (or
grid) in wind tunnels and in turbulent atmosphere. In the case where
isotropic turbulence was produced by screens in wind tunnels, the dissi-
pation e may be defined either as

2
:v~c=--

where v’
2

is the mean square of the velocity fluctuation, V the
mean velocity, x the distance from the screen, or as

~ = 15VV’2

A2

where A is the length introduced by Taylor, experimentally determin-
able by inscribing a parabola. in the graph of the correlation function
B7Z(r). When the dissipation & is known, W. can be computed from

the formula

W. = 2.77 c3/4 cm/sec2 (3.20)

1 ..——
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obtained by substituting the air viscosity V = 0.15 sq cm/sec in equa-
tion (3.19).

In particular, when use is made of some of the data given by
Townsend (reference 4) (these data refer to the flow in a wind tunnel
behind a sauare screen with size of mesh M = 6 inches at a distance
x = 30.5 M- from the screen for various values of the velocity V), the
following values for & and W() are obtained;

V m see-l c cm2 sec-3 cm sec-2‘o

12.2 60.5 60.4
24.4 312.4 206.8
30.5 559.8 320.3

From this table it is observed that the instantaneous values of
the acceleration in turbulent flow behind the screen will be of the
order of several meters per second per second.

The application of formula (3.19) or (3.20) to the computation of
the accelerations in a turbulent atmosphere is rendered difficult by
the fact that at the present time there are no available measurements
of energy dissipation for this case. However, for the degree of accur-

acy of the computa.tionsy much justification exists for employing an
estimate of the magnitude of & for a turbulent atmosphere by the

formulas of the theory of the logarithmic boundary layer. It is known

{reference 15) that for the logarithmic boundary layer

1 V*3~=——
~Y

(3.21)

where y is the distance from the wdlJ x is a nond-imensional con-

V
stant (K~rm~n constant) equal approximately to 0.4, and Vw = To P

(To is the friction stress, P the density) is the so-called dynamic

velocity determined by the difference of the mean velocities at two
points or by the mean velocity at one point and the magnitude of the
roughness. Substitution in formula (3.19) of expression (3.21) for
the dissipation and v = 0.15 sq cm/sec gives a

which determines the mean square acceleration in
air layer:

computational formula
a logarithmic boundary

(3.22)
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Since V* is

31

proportional to the mean velocity V,

W. - vgl~ (3.23)

that is, W. increases rapidly with V. For the example, the magnitude
of the roughness is assumed to be

‘o =
3 cm (it is noted incidentally

that the computations following depend relatively little on the magni-
tude of the roughness) and the mean velocity of the wind at the height
150 cm is denoted by V. Then

v=*j=

and for the mean square acceleration
following values are obtained:

‘o

0.1 v (3.24)

at various velocities V the

V, m see-l 1 3 5 6 8

w , cm sec-2 22 260 830 1200 2400
0

The mean square acceleration under the conditions considered for
a mean velocity of tinewind V = 5.5 m[sec thus attains the magnitude
of the acceleration of gravity g, and for a.greater wind velocity may
considerably exceed this acceleration. It is natural to assume that
such large accelerations may play a significant part in
processes in the atmosphere (e.g., in the phenomenon of
of fogs).

The computation of the correlation function of the
field is now considered:

Aij(M,M’) = wi(M)wj(M’)

Again, substitution of equation (3.2) gives

many physical
the condensation

acceleration

(3.25)

(3.26)

The magnitudes without the primes refer to point M and those with
primes to the point M’. The middle term on the right side may be
neglected for the same reasons for which the middle term on the right
side of equation (3.3) was previously rejected, and the first and third
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terms may easily be expressed in terms of the structural functions (1.1)

and (2.1). Therefore)
.-,

where Ei and ~j are the

apI 1 a’%(M,M’)
?=T b~b~

(3.27)

is

components of the vector MM’ and

1A2D (M,Mf)

(

az a2 + az
AviA’vj = - ~

)

A=— — — (3.28)
ij bE12 ‘%22 %32

The transformation of equations (3.27) and (3.28) follows. Since

II(M,M’) depends only on the distance r=-

(3,29)

Replacement of Dij(MjM’) by means of equations (1.3) and (1.12)

yields

which gives the following:

E,iEj
A2Dij(MJM’) =Dl(r) ~ +D2(r)~ij

where

dD
22 +12 ‘2D22 4 ‘4D22 r

d5DZ~
Dl(r)=-~— ——- —-–—

r3 dr r2 ~r2 dr4 2 dr5

d%z 4
#x

d3D22 + 5
d%l ~ d5DZ~

D2(r)=L—-— — +:_ — -—+r

r3 dr r2 ~r2 r ~r3 dr4 2 dr5

Thus
EiEj

Aij(MjM’) =Al(r) _
r2

+ A2(r)8ij

(3.30)

(3.31)

(3.32)

(3.33)
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where

Al(r) =

{ }

I d211(r) -1 dII(r) ‘2 Dl(r)

2p2 drz
r dr ‘-~

A2 (r) .2 *-2 z D2(r)
202r
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(3.34)

(3.35)

and Dl(r) and D2.(r) are determined by formulas (3.31) and (3.32).

The functions Al(r) and A2(r) are expressed in terms of the

longitudinal and transverse correlation functions of the acceleration
field determined by the equations

AZZ(r) 7( Z(= w M)w M’

(3.36)

where W1 (M)
the points M

Ann(r) = wn(M)wn(M’)

and WZ(M’) are the projections of the accelerations at
and M’ on the direction of the vector MM’, and Wn (M)

and wn(M’) are the projections of the accelerations at th=se po~n~s
in a direction perpendicular to the vector MM’ . In fact, the acceler-
ation field of a locally isotropic turbulent flow is isotropic in the
usual sense, and therefore

A7Z(r) - Ann(r)
Aij(M)M’) = Ei%j +~n(r)bij

r2
(3.37)

(see reference 19 and equation (1.3) herein). Comparing equations
(3.33) and (3.37) andtaking into account equations (3.34) and (3.35)
yields

AZ2(r) =
1 d21Z(r)

Al(r) +A2(r) .——— -$ (Dl(r) +D2(r))
2p2 dr2

(3.38)

Ann(r) = A2(r) .&-- $D2(r)

2p2r
dr

(3.39)

In formulas (3.38) and (3.39) it is possible, in the usual manner)
to pass to nondimensional functions. These may be further computed
with the aid cf the results of sections 1 and 2.

I
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It may be noted that in these computations the terms with D1(r)
and D2(r) may be neglected without introducing any appreciable error.
In fact, it was shown previously that for r = O the terms depending
on the viscosity, that is, the terms containing Dl(r) and D2(r), are
negligibly small compared with the terms determining the pressure gra-
dients . With increasing r both terms decrease asymptotically, the
terms depending on the viscosity decreasing much more rapidly than
those determined by the pressure gradient. From formulas (2.6) and
(1.9) it follows that for r>> 71

d2~(r) r-2/3.
dr2

(3.40)

Dl(r) N r
-10/3

D2(r) - r
-lo/3

(3.41)

Thus, for both small and large r, the terms of equations (3.38)
and (3.39) containing v are considerably smaller than the terms

depending on II(r). In this connection, the investigation of the struc-
ture of the acceleration field in a turbulent flow permits the rejection
of terms with viscosity in the equations of motion, and the assumption
that

1 bp
w.=–-
1 p%

A ‘“)”’)=&%$iyij

(i = 1,2,3) (3.42)

(3.43)

For the longitudinal and transverse correlation functions (3.36),
there is then obtained

(3.44)

1 d211(r)
A77(r) =—

2P2 dr2

%n(r) = ~ ‘~jr)
20 r
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With the aid of formulas (2.24), (1.7),and (1.25), the change to
nondimensional magnitudes is made,and using equation (2.25)

where ~Jx) and ~nn (x) are universal functions which are given by

the formulas

(3.48)

As in the case of the velocity and pressure fields, for x<cl and,for
x>>l, it is possible to obtain for the functions introduced in the
theory described herein simple asymptotic formulas. It is clear first
of all that

(3.49)

If in formulas (3.47) and (3.48) x is assumed much less than 1
(x<<l), use maybe made of the fact that for these values of x, as
shown in the first formula of equation (1.28), (372(x)= x2/2, and there-
fore 9(x) = 30; whence

for x<<l (3.50)

arm(x) = arm(o) - ; X2
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second extreme case, for x>>l, the asymptotic behavior
nn(x) is determined with the aid of formulas (2.30)and a

~z(x) = :x
-2/3

for x>>l (3.51)

a,n(x) = ; x-2/3

The computation of the functions al~(x) and ~n(x) for x-1

may be carried out numerically by using the data contained in sections
1 and 2. It is convenient in place of aZ2(x) and
duce the normalized functions

~n(x) tO intro-

,,,(x) = -*

~n(x)
Rnn(x) =

~n(”)

(3.52)

These functions are equal respectively to the correlation coeffi-
cient of the longitudinal and transverse components of the acceleration
at two points a distance r = x~l from each other. The graphs of the

functions Rzz(x) and Rnn(x), which were determined by numerical inte-
gration of the integrals appearing in the right sides of equations (3.47)
and (3.48), are shown in figure 3. It is seen that the longitudinal
correlation function RZZ (X) rapidly decreases, and for X31.1 it
may practically be considered equal to zero. The function Rnn(x)j on
the contrary, decreases at a relatively slow rate, and for x = 3 is
approximately equal to 0.17. When the magnitudes of these functions are
estimated for relatively large values of x (of the order of10 and
above), formulas (3.51) may be used. From these formulas, when x = 10,
for example, R ~(10) = 0.03.

!

(In fig. 3 the range of applicability of
formulas (3.51 is not represented, since to do so it would be necessary
to choose a much smaller scale.)

It may be noted further that the form of the correlation functions
of the acceleration field shown in figure 3 differs sharply from the
form of the correlation functions of the velocity field for isotropic
turbulence. Tn the case of the velocity field, the graph of the longi-
tudinal correlation function is generally located above the graph of
the transverse function and the axis of the abscissas intersects the
second and not the first of these curves. This difference in behavior
of the correlation functions for the velocities and accelerations is
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explained by the fact that the velocity field in an incompressible fluid
is a.solenoids.1 vector field, whereas the acceleration field is con-
sidered as a.potential vector field (see equation (3.42)). From this
it follows that the functions R27(x) and Rnn(x)- are interconnected

by the relation

dRnn (x)
RZ2(X) = Rnn(x) + X dx (3.53)

~~is relation, which is a necessary and sufficient condition for the
isotropic potential vector field having the correlation functions
RZ2(X) and Rnn(x), w%s obtained by A. M. Obukhoff,while the correla-

tion functions B2Z(r) and Bnn(r) of the velocity field satisfy the

Karman condition (cf. reference 19 and equation (1.13)]:

dB22 (r)
Bnn(r) = Bzz(r) +; dr (3.54)

Conditions (3.53) and (3.54), in addition to the Factor l/2 in
the second term on the right, differ in the interchange of the roles
o? the longitudinal and transverse functions. It is not surprising,
therefore,that the functions RZI(X) and Rnn(x) behave in a manner

opposite to the behavior of the functions BZZ (r) and Bnn(r).

In conclusion, the authors wish to express thanks to
A. V. Perepelkina and Y. V. Frokhorova,who carried out the numerical
computations for sections 2 and 3. ‘

Translated by S. Reiss
National Advisory Committee
for Aeronautics
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